Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water

Authors

  • Arzu KILIÇ Biyomühendislik ve Bilimleri
  • Serden BAŞAK
  • Kevser CIRIK Kahramanmaraş Sütçü İmam Üniversitesi Çevre Mühendisliği Bölümü
  • Dilek ÖZGÜN
  • Dilek AKMAN
  • Şebnem ÖZDEMİR
  • ÖZER ÇINAR Uluslararası Saraybosna Üniversitesi Biyolojik Bilimler ve Biyomühendislik Programı

DOI:

https://doi.org/10.7596/taksad.v1i4.83

Keywords:

Drinking water treatment, biological denitrification, arsenic, pesticides, perchlorate, uranium

Abstract

In recent years, nitrogenous fertilizers used in agriculture, unconscious and without treatment wastewater is discharged led to an increase in groundwater nitrate pollution. In many countries, nitrate concentration in the ground waters used as drinking water source exceeded the maximum allowable concentration of 10 mg/L NO3-N. According to a study, some wells in the Harran Plain contain nitrate as high as 180 mg/L NO3--N and the average concentration for whole plain is 35 mg/L NO3--N (Yesilnacar et al., 2008). Additionally, increased water consumption, unconscious use of fertilizers and pesticides has led to the emergence of co-contaminant in drinking water. Recently, hazardous to human health co-contaminant such as arsenic, pesticides, perchlorate, selenate, chromate, uranium are observed in the nitrate pollution drinking water. There are many processes used for the removal of nitrate. The physicalchemical technologies that can be used for nitrate removal are reverse osmosis, ion exchange and electrodialysis (Alvarez et al., 2007). Important disadvantages of these processes are their poor selectivity, high operation and maintenance costs and the generation of brine wastes after treatment. Consequently, biological treatment processes to convert nitrates to benign dinitrogen gas, could be an interesting alternative for the remediation of groundwater contaminated with nitrates. The aim of this article, effective and cheap method for the removal of nitrate from drinking water biological denitrification is to examine the usability of contaminated drinking water with co-contaminant pollutions.

Author Biographies

Arzu KILIÇ, Biyomühendislik ve Bilimleri

Biyomühendislik ve Bilimleri

Serden BAŞAK

Çevre Mühendisliği

Kevser CIRIK, Kahramanmaraş Sütçü İmam Üniversitesi Çevre Mühendisliği Bölümü

Çevre Mühendislii Bölümü Çevre Teknolojileri Anabilim Dalı

Dilek ÖZGÜN

Biyomühendislik ve Bilimleri

Dilek AKMAN

Biyomühendislik ve Bilimleri

Şebnem ÖZDEMİR

Biyomühendislik ve Bilimleri

References

Aslan S., Türkman A. (2003). Đçme Sularından biyolojik denitrifikasyon yöntemiyle nitrat

gideriminde ortam koşullarının etkisi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik

Dergisi. 5, 17-25.

Aslan, S. (2002). Combined Biological Removal of Pesticides and Nitrates in Drinking

Waters. PhD thesis, Dokuz Eylul University, Turkey.

Aslan S. ve Türkman A. 2004. Simultaneous biological removal of endosulfan (α+β) and

nitrates from drinking waters using wheat straw as substrate. Environment International 30,

–455.

Aslan S. ve Türkman A. (2006). Nitrate and pesticides removal from contaminated water

using biodenitrification reactor. Process Biochemistry 41, 882–886.

Böke N. (2008). The Effect Of Pesticide Adsorption On Biological Denitrification Of

Drinking Water. Ege University Graduate School of Applized and Natural Sciences Bornova,

Izmir.

Chung J., Rittmann B.E., Wright W.F., Bowman R.E. (2007). Simultaneous bio-reduction of

nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a

hydrogen-based membrane biofilm reactor, Biodegradation, 18:199–209.

Feleke Z., Sakakibara Y. (2001). Nitrate pesticides removal by a combined

bioelectrochemical/adsorption process. Water Sci Technol., 43(11): 25–33

Helvacı C. (2005). Batı Anadolu’da Arsenik ile Bor Mineralleri Đlişkisi ve Sağlığa Etkileri.

Tıbbi Jeoloji Sempozyumu, Türkiye.

Hosono T., Nakano T., Shimizu Y., Onodera S., Taniguchi M. (2011). Hydrogeological

constraint on nitrate and arsenic contamination in Asian metropolitan groundwater, Hydrol.

Process. 25, 2742–2754.

Ju X., Field J. A., Sierra-Alvarez R., Salazar M., Bentley H., Bentley R. (2006).

Chemolithotrophic Perchlorate Reduction Linked to the Oxidation of Elemental Sulfur.

Biotechnology and Bioengineering, Vol. 96, No: 6.

Ju X., Field J. A., Sierra-Alvarez R., Byrnes D. J., Bentley H., Bentley R. (2008). Microbial

perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere

,114–122 .

Liu H., Jiang. W., Wan D., Qu J. (2009). Study of a combined heterotrophic and sulfur

autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous

Materials, 169, 23–28.

Logan B. E., LaPoint D. (2001). Treatment of perchlorate- and nitrate-contaminated

groundwater in an autotrophic, gas phase, packed-bed bioreactor, Water Research 36, 3647–

Min B., Evans P., Chu A., Logan B.E. (2004). Perchlorate removal in sand and plastic media

bioreactors, Water Research 38, 47–60.

Mohan D., Pittman C. U. (2007). Arsenic removal from water/wastewater using adsorbents -

A critical review. Journal of Hazardous Materials, 142, 1-53.

Moon H. S., Chang S. W., Nam K., Choe J., Kim J. Y. (2006). Effect of reactive media

composition and co-contaminants on sulfur-based autotrophic denitrification. Environmental

Pollution, 144, 802-807.

Panthi S. R., and WAREHAM D. G. (2008). The effect of arsenite on denitrification using

volatile fatty acids (VFAs) as a carbon source, Journal of Environmental Science and Health

Part A 43, 1192–1197.

Sahinkaya E., Dursun N., Kilic A., Demirel S., Uyanik S., Cinar O. (2011). Simultaneous

heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water

treatment: Control of sulfate production. Water Res.

Sun W., Sierra-Alvarez R., Field J. A. (2010). The Role of Denitrification on Arsenite

Oxidation and Arsenic Mobility in an Anoxic Sediment Column Model With Activated

Alumina. Biotechnology and Bioengineering, Vol. 107, No: 5.

Upadhyaya G., Jackson J., Clancy T.M., Hyun S.P., Brown J., Hayes K.F., Raskin L. (2010).

Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed

bioreactor system. Water Research 44, 4958- 4969.

Tuğrul, Z. (2006). Toz Halinde Fe0 ve Al0 ile Nitratın Kimyasal Denitrifikasyonu. Yüksek

Lisans Tezi Çevre Mühendisliği Anabilimdalı, Isparta.

Wan D., Liu H., Qu J., Lei P., Xiao S., Hou Y. (2009). Using the combined

bioelectrochemical and sulfur autotrophic denitrification system for groundwater

denitrification. Bioresource Technology, 100 142–148.

Yazgan, M. (2001), Endosülfanın Sulardan Ozon Oksidasyonu ile Giderilmesi Đstanbul

Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Đstanbul,4-6, 59, 64s.

Yesilnacar M.I., Sahinkaya E., Naz M., Ozkaya B. (2008). Neural network prediction of

nitrate in groundwater of Harran Plain, Turkey. Environ. Geol. 56, 19-25.

Yılmaz O., Ekici K. (2004). Van Yöresinde Đçme Sularında Arsenikle Kirlenme Düzeyleri.

YYÜ Vet Fak Derg. 15, 47-51.

Zhang T.C. (2004). Development Of Sulfur-Lımestone Autotrophıc Denıtrıfıcatıon Processes

For Treatment Of Nıtrate-Contamınated Groundwater In Small Communıtıes, Final Report,

Midwest Technology Assistance Center (MTAC).

Published

2013-01-28

How to Cite

KILIÇ, A., BAŞAK, S., CIRIK, K., ÖZGÜN, D., AKMAN, D., ÖZDEMİR, Şebnem, & ÇINAR, ÖZER. (2013). Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water. Journal of History Culture and Art Research, 1(4), 475-486. https://doi.org/10.7596/taksad.v1i4.83

Issue

Section

Articles