Tekstil Atıksularının Gideriminde Atık Döküm Kumlarının Kullanımı / Using of Waste Foundry Sands in Removal of Textile Wastewater

ELİF HATİCE GÜRKAN, SEMRA ÇORUH

Özet


Ülkelerin sanayileşmesi ile birlikte endüstriyel bazlı su kullanımının artması ve son yıllarda ortaya çıkan küresel ısınma sorunu, yüzeysel ve yeraltı su kaynaklarının tükenmesine sebep olmaktadır. Endüstriyel atıksuların doğaya yaptığı etkiler önemli düzeyde, doğal dengeyi değiştirici ve bazı durumlarda geri dönülmez nitelikte olmaktadır. Endüstrilerden kaynaklanan atıksular, evsel atıksulara göre kaynak, miktar ve karakter açısından büyük farklılıklar gösterirler. Bu nedenle endüstri tesisinin çıkış sularının doğal su ortamlarının kirletmesini engelleyecek şekilde arıtılması gerekmektedir. Bu atıksuların arıtılıp geri kazanılması ile hem su kaynaklarının tüketimi hem de deşarj edilen arıtılmış atıksuların miktarı azaltılmakta ve çevresel etkileri en aza indirilebilmektedir. Ülkemizdeki en büyük endüstri dallarından biri olan tekstil endüstrisi, çok su tüketilen, kullanılan hammadde ve kimyasal maddelerin, gerçekleştirilen işlemlerin, her işlem için uygulanan teknolojilerin çeşitliliği nedeni ile farklılık gösteren ve üretilen ürüne bağlı atık kaynağı olarak son derece değişken yapıya sahip bir endüstridir. Tekstil endüstrisi atıksularının en belirgin özelliği, yüksek miktarda organik ve inorganik kimyasal içermesi ve yüksek toplam organik karbon (TOK), kimyasal oksijen ihtiyacı (KOI) ve yoğun renk içeriğidir. Alıcı su kaynaklarına verilen boyar maddeler organik yük olarak bu kirliliğin küçük bir kısmını oluşturmaktadır; ancak alıcı ortamda çok düşük konsantrasyonlarda boyar madde bulunması bile estetik açıdan istenmeyen bir durumdur. Bu nedenle boyar madde içeren tekstil endüstrisi atıksularından renk giderim prosesleri ekolojik açıdan önem kazanmaktadır. Günümüzde boyar maddelerin giderimi büyük oranda fiziksel ve kimyasal yöntemlerle gerçekleştirilmektedir. Bu çalışmada, atık döküm kumlarının, tekstil endüstrisi atık sularında renk gideriminde adsorbent olarak kullanılması amaçlanmaktadır. Using of Waste Foundry Sands in Removal of Textile Wastewater Nowadays, the accelerating need of water due to usage of water in industralized countries and global warming is causing all water sources to be exhausted. The effects the industrial wastewater made to the nature are important level, changer of natural balance, and sometimes non returned position. By reusing the treated the wastewater, not only the consumption of natural water sources has been prevented, but also the amount of discharged treated wastewater and its effects to the environment has been decreased. The wastewater resulted from industries shows big differences according to the wastewater in houses in the conditions of resource, amount, and character. So output water of the industry establishment has to be purified to prevent not to dirty natural water places. Textile industry is one of the biggest industries of Turkey and it consumes Access amount of water. As there are several methods and technologies used in this sector due to the different raw materials and various chemicals, the wastewaters obtained vary related to the products produced. The most prominent feature of textile industry wastewater is contained high amounts of organic and inorganic chemicals, and high total organic carbon (TOC), chemical oxygen demand (COD) and intense color. The discharge of dyes into the receiving waters constitutes only a small portion of water pollution. However the presence of very low concentrations of dyes in receiving waters is aesthetically undesirable. Therefore, treatment processes removing dyes from textile effluents have become important in order to conserve receiving waters. In this study is to investigate using the adsorpsion method of removal with waste foundry sands, which are used expecially dye nd textile industries and are an important polluting agent in the waste water dumped into the environment by these industries.

Anahtar Kelimeler


Endüstriyel atıksu, atık döküm kumu, adsorpsiyon, Industrial waste water, waste fondry sand, adsorption

Tam Metin:

PDF

Referanslar


Abichou T., Benson C.H., Edil T.B., Freber B.W. (1998). Using Waste Foundry Sand for

Hydraulic Barriers. ASCE Geotechnical Special Publication, 79, 86-99, 1998.

Abichou T., Benson, C.H., Edil, T.B. (2000). Foundry Green Sands as Hydraulic Barriers:

Laboratory Study. ASCE Journal of Geotechnical and Geoenvironmental Engineering,

(12), 1174-1183,

Akbal, F. (2005). Adsorption of Basic Dyes From Aqueous Solution onto Pumice Powder.

Journal of Colloid and Interface Science, 286, 455–458.

Aksu, Z. (2005). Aplication of Biosorption For The Removal of Organic Pollutants: a rewiev.

Process Biochemistry, 40, p: 997–1026.

Aksu, Z., Isoglu, I. A. (2006). Use Of Agricultural Waste Sugar Beet Pulp For The Removal of Gemazolturquoise Blıe-G Reactive Dye from Aqueous Solution. Journal of Hazardous

Materials, B137, 418–430.

Al-Degs, Y., Khrausheh, M. A. M., Allen, S.J., Ahmad, M.N. (2000). Effect Of Carbon

Surface Chemistry On The Removal Of Reactive Dyes From Textile Effluent. Water

Research, vol.,34, no.3, ss. 927-935.

American Foundrymen’s Society (1991). Alternative Utilization of Foundry Waste Sand.

Final Report (Phase I) prepared by AFS Inc. for Illinois Department of Commerce and

Community Affairs, Des Plaines, Illinois,.

Bakis R., Koyuncu H., Demirbas A. (2006). An Investigation of Waste Foundry Sand in

Asphalt Concrete Mixtures. Waste Management Resources, 24, 269-274.

Baskaralingam, P., Pulikesi, M., Elango, D., Ramamurthi, V., Sivanesan, S. (2006).

Adsorption of Acid Dye onto Organobentonite. Journal of Hazardous Materials, B128, 138–

Basar H.M., Aksoy N.D. (2012). Recovery Applications Of Waste Foundry Sand. Journal of

Engineering and Natural Sciences, 205-224.

Braham A. (2002). The Use of Blended Recycled Foundry Sand in Hot Mix Asphalt. Interim

Report, University of Wisconsin, US.

Benkli, Y.E., Can, M.F., Turan, M., Celik, M.S. (2005). Modification of organozeolite surface

for the removal of reactive azo dyes in fixed-bed reactors. Water Research, 39, 487–493.

Can, Y.M., Yildiz, E. (2005). Phospate Removal From Water By Fly Ash: Factorial

Experimental Design. Journal of Hazardous Materials, 6-12.

Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X., Chen, Y.X. (2005). Biosorption of

copper(II) and Zinc(II) From Aqueous Solution by Pseudomonas putida CZ1. Colloids and

Surfaces B: Biointerfaces, 46, p; 101–107.

Deng A., Tikalsky P.J., (2008). Geotechnical and Leaching Properties of Flowable Fill

Incorporating Waste Foundry Sand. Waste Management, 28, 2161-2170,

Dincer, A. R., Günes, Y., Karakaya N., (2007). Coal-based bottom ash (CBBA) waste

material as adsorbent for removal of textile dyestuffs from aqueous solution. Journal of

Hazardous Materials, 141, 529–535.

Eltem, R., (2001). Atık Sular ve Arıtım. Ege Üniversitesi Fen Fakültesi Yayınları, No: 172,

Đzmir.

Engroff E.C., Fero E.L., Ham R.K., Boyle W.C., (1989). Laboratory Leachings of Organic

Compounds in Ferrous Foundry Process Waste. Final Report to American Foundrymen's

Society, Des Plaines, IL.

Güney Y., Koyuncu H., (2002). Atık Döküm Kumlarının Yol Alt Yapısında Kullanımı. Zemin

Mekaniği ve Temel Mühendisliği 9. Ulusal Kongresi, 21-22 Ekim, Eskişehir.

Guney Y., Aydilek A., Demirkan M., (2006). Geoenviromental Behavior of Foundry Sand

Amended Mixtures for Highway Subbase. Waste Management, 26, 932-945.

Guney Y., Sari Y.D., Yalcin M., Tuncan A., Donmez S., (2010). Re-usage of Waste Foundry

Sand in High-Strength Concrete. Waste Management, 30, 1705-1713.

Ham, R.K., Boyle W.C., (1981). Leachability of Foundry Process Solid Wastes. Journal of

the Environmental Engineering Division, 107(1), 155-170.

Ham R.K., Hippe J.C., Boyle W.C., Lovejoy M., Trager P.A., Wellender D., (1990).

Evaluation of Foundry Wastes for Use in Highway Construction. ASCE Environmental

Engineering, 681-682.

Javed S., Lovell C.W., (1994a). Use of Waste Foundry Sand in Civil Engineering.

Transportation Research Board, 1486,109-113.

Javed S., Lovell C.W., Wood L.E., (1994b). Waste Foundry Sand in Asphalt Concrete.

Transportation Research Record, 1437, 27-34.

Kaur G., Siddique R., Rajor A., (2012). Properties of Concrete Containing Fungal Treated

Waste Foundry Sand. Construction and Building Materials, 29, 82-87.

Khatib J.M., Ellis, D.J., (2001). Mechanical Properties of Concrete Containing Foundry Sand.

ACI Special Publication, 200, 733-748.

Khatib J.M, Baig S., Bougara A., Booth C., (2010). Foundry Sand Utilisation in Concrete

Production. 2nd International Conference on Sustainable Construction Materials and

Technologies, 28-30 Haziran, Ancona, Italy.

Kilinc Alpat, S., Ozbayrak, O., Alpat, S., Akcay, H., (2008). The Adsorption Kinetics and

Removal Of Cationic Dye, Toluidine Blue O, from Aqueous Solution with Turkish Zeolite.

Journal of Hazardous Materials, 151, 213–220.

Kirk P.B., (1998). Field Demonstration of Highway Embankment Constructed Using Waste

Foundry Sand. Doktora Tezi, Purdue University, West Lafayette, IN, US,.

Lindsay B.J., Logan T.J., (2005). Agricultural Reuse of Foundry Sand. Journal of Residuals

Science&Technology, 2(1), 3-12.

Mahramanlıoğlu, M., Arkan, B., (2002). Kömürden Elde Edilen Adsorbent ile Boyarmadde

Uzaklaştırılması. Türkiye 13 Kömür Kongresi Bildirileri Kitabı, 29-31 Mayıs Zonguldak,

-215.

Mast D.G., Fox P.J., (1998). Geotechnical Performance of a Highway Embankment

Constructed Using Waste Foundry Sand. Geotechnical Special Publication, 79, 66-85.

Mohamed, M.M., (2004). Acid dye removal: comparison of surfactant- modified mesoporous

FSM-16 with activated carbon derived from rice husk. Journal of Colloid and Interface

Science, 272: 28-34.

Naga S.M., El-Maghraby A., (2003). Industrial Waste as Raw Materials for Tile Making.

Silicates Industrials, 68, 89-92.

Naik T.R., Kraus R.N., Chun Y.M., Ramme W.B., Siddique R., (2004). Precast Concrete

Products Using Industrial By-products. ACI Materials Journal, 101(3), 199-206.

Ozcan, A.S., Erdem, B. and Ozcan, A., (2004a). Adsorption of Acid Blue 193 from aqueous

solutions onto Na-bentonite and DTMA-bentonite. J.Colloid and Interface Sci., 280 (1), 44-

Ozcan, A.S. and Ozcan, A., (2004b). Adsorption of acid dyes from aqueous solutions onto

acid-activated bentonite, J.Colloid and Interface Sci., 276 (1), 39-46

Partridge B.K., Fox P.J., Alleman J.E., Mast D.G., (1999). Field Demonstration of Highway

Embankment Construction Using Waste Foundry Sand. Journal of the Transportation

Research Board, 1670, 98-105.

Rauf M.A., Bukallah, S.B., Hamour, F.A., Nasir, A.S., (2008). Adsorption of Dyes from

Aqueous Solutions onto Sand and Their Kinetic Behavior. Chemical Engineering Journal,

, 238–243.

Sakkayawong, N., Thıravetyan, P., Nakbanpote, W., (2005). Adsorption mechanism of

synthetic reactive dye wastewater by chitosan. Journal of Colloid and Interface Science, 286:

-42.

Seung-Whee R., Woo-Keun L., (2006). Characteristics of Spent Foundry Sand-Loess Mixture

as Ceramic Supports Materials. Materials Science Forum, 510-511, 378-381.

Siddique R., Noumowe A., (2008). Utilization of Spent Foundry Sand in Controlled LowStrength

Materials and Concrete. Resources, Conservation and Recycling, 53, 27-35.

Siddique R., Schutter G., Noumowe A., (2009). Effect of Used-Foundry Sand on the

Mechanical Properties of Concrete. Construction and Building Materials, 23, 976-980.

Smith A., (1994). Utilization of Used Foundry Sand in Concrete. Journal of Materials in Civil

Engineering, 6(2), 254-63,.

Solmaz P., (2008). Atık Döküm Kumunun Geçirimsiz Perde Yapılarak Tekrar Kullanımı.

Yüksek Lisans Tezi, ĐTÜ Fen Bilimleri Enstitüsü, Đstanbul.

Tarun R.N., and Shiw S.S., (1997). Permeability of Flowable Slurry Materials Containing

Foundry Sand and Fly Ash. Journal of Geotechnical and Geoenvironmental Engineering,

(5), 446-452,

Tikalsky P.J., Smith E., Regan R., (1998). Proportioning Spent Casting Sand in Controlled

Low-Strength Materials. ACI Materials Journal, 95(6), 740-746.

Tikalsky P.J., Gaffney M., Regan R., (2000). Properties of Controlled Low-Strength Material

Containing Foundry Sand. ACI Materials Journal, 97(6), 698-702.

Vipulanandan C., Weng Y., Zhang C., (2000). Designing Flowable Grout Mixes Using

Foundry Sand, Clay and Fly ash in Advances in Grouting Modification. ASCE Geotechnical

Special Publications, 104, 215-233.

Wang S, Boyjoo Y, Choueib A, Zhu Z.H, (2005). Removal of dyes from aqueous solution

using fly ash and red mud. Water Research, 39: 129-138.

Yalçın M., Güney Y., Koyuncu H., Baş, Ö.F., (2003). Atık Döküm Kumunun Betonda

Kullanılabilirliği. 5. Ulusal Beton Kongresi, 1-3 Ekim, Đstanbul.

Yener J., Kopac T., Dogu G., Dogu T., (2006), “Adsorption Of Basic Yellow 28 From

Aqueous Solutions With Clinoptilolite And Amberlite”, Journal of Colloid and Interface

Science, 294(2), 255-264.

Yoo, E.S., Libra, J. and Adrian, L. (2000). Mechanism of Decolorization of Azo Dyes in

Anaerobic Mixed Culture. Journal of the Environmental Engineering Division, 127(9), 844-

Zille, A., Tzanov , T.,. Gübitz, G., Cavaco-Paulo, A., (2003). Immobilized LaccaseFor

Decolourization Of Reactive black 5 Dyeing Effluent. Biotech. Letters, 25:1473–1477.




DOI: http://dx.doi.org/10.7596/taksad.v1i4.123

Refback'ler

  • Şu halde refbacks yoktur.




Telif Hakkı (c)